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LETTER TO THE EDITOR 

Universal substructures of percolation clusters: The skeleton 

S HavlintP, R Nossalt, B Truss and G H Weisst 
t Physical Sciences Laboratory and $ Computer Systems Laboratory, DCRT, National 
Institutes of Health, Bethesda, M D  20205, USA 

Received 14 August 1984 

Abstract. We define the ‘skeleton’ of a cluster aggregate as the set of all sites belonging 
to the shortest paths connecting a chosen site with the Lth chemical shell surrounding that 
site. The fractal properties of skeletons of percolation clusters at criticality have been 
studied, and we infer that the mass of the skeleton M ,  scales with the chemical distance 1 
(for I C <  L )  as M,- l d ; ,  where d ;  = 1 is universal for 1 =z d S 6. Numerical evidence which 
supports this conclusion is presented for d = 2, and an analytical proof is given for d = 6. 

The investigation of the structure and substructure of cluster aggregates-especially 
the percolation cluster and its backbone-has been of great interest for some time 
(Skal and Shklovski 1975, Stanley 1977, Adler et al 1982, Mandelbrot 1982, Herrmann 
et a1 1984). Recently the ‘intrinsic dimension’ d, has been examined and relationships 
between d, and other critical exponents have been established (Havlin and Nossal 
1984, Havlin et al 1984a). The exponent d,  is defined by the relationship M - I d ( ,  
where M is the number of sites of a cluster within a chemical distance 1 units from 
an arbitrary point. The chemical distance between two points on the cluster is the 
shortest path of occupied sites linking those points. 

In this letter we study the topological properties of substructures of percolation 
clusters and introduce the concept of the ‘skeleton’ of a cluster as such a substructure. 
The skeleton of a cluster aggregate is defined here as the ensemble of sites lying on 
the shortest paths connecting a chosen site, designated as the origin, with the Lth 
chemical shell defined with respect to that site. Consequently, all other sites of the 
cluster, those lying on ‘dead ends’ and longer paths, are excluded. Dead ends are 
branches which emanate from the skeleton but terminate before reaching the Lth shell. 
The structure and the ‘intrinsic’ dimension of the skeleton d,, which relates the mass 
of the skeleton of a percolation cluster M ,  to the chemical distance 1 through M,- 
I d ; ( / < <  L ) ,  are now studied. We argue that di  is universal for 1 d S 6 and has the 
value dq = 1. Numerical evidence is presented for d = 2 and exact results for d = 6 .  

The skeleton of a percolation cluster at p = p c  in d = 2 can be generated by first 
using the cluster growth method of Alexandrowicz (1980) to grow a cluster of L shells 
on a triangular lattice (Havlin and Nossal 1984), and later discarding all sites which 
are not on the shortest paths to the Lth shell. Specifically, we determine the sites 
which belong to the skeleton by starting at the periphery (the Lth shell) of the cluster, 
and then searching for those occupied sites in shell L- 1 which are connected to sites 
in the Lth shell. All other sites in shell L - 1 are discarded. We then continue searching 
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in a similar manner until the origin is reached. Using this method we generated 
skeletons of percolation clusters with L= 100, 200, 300, and 400 shells (see figure 1). 
The number of sites in the Ith shell of a skeleton, B”( I), averaged over the configurations 
of the successful trials of attempts to generate clusters to a value of I = L, tlien was 
calculated. Results of these computations are shown in figure 2. As seen in figure 3, 
we find that the various curves can be superimposed if they are plotted as a function 

Some insight into this observed scaling may be obtained by examining the skeletons 
of percolation clusters in d =6. Such clusters can be generated by percolation on a 
Cayley tree (de Gennes 1976). The fact that Cayley trees do not have loops simplifies 
our task. From studies on generalised branching processes it can be shown (Harris 
1963) that, at criticality, the probability that any particular tree (with coordination 

of IIL. 

Figure 1. ( a )  Typical 2D percolation cluster on a triangular lattice, grown to a maximum 
chemcial size of L = 400. (b)  The skeleton of the cluster shown in ( a ) .  Note the increasing 
number of branches as I increases. Although a few small loops are evident, their contribution 
to the total mass of the skeleton is negligible. 

Figure 2. The number of sites Bs(I)  in the Ith shell 
of the skeletons of percolation clusters which were 
grown to sizes of L=200 (0), 300 (U), 400 (A)  
shells. (The number of configurations used in the 
averaging was: L = 400, n = 16; L = 300, n = 23; L = 

200, n = 3 3 ;  L =  100, n =63 (see figure 3)). 

Figure 3. The data of figure 2, plotted as a function 
of I/L. 0, L =  100; 0, L = 2 0 0 ;  U, L=300;  A, 
L=400. 
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number 3) grows to at least I shells is P{Z,  > 0) - 4/1 and that the expected number 
of occupied sites in the Ith shell of a tree grown at criticality (given that the tree had 
not terminated before the Ith step) is B( I)  = 1/4, for I >> 1 .  Consequently, the expected 
number of sites in the Ith shell of the skeleton of a tree grown to a maximum of L 
shells can be expressed as Bs( I) - B(I )  P{Z,-,  > 0}, or Bs( I) - (1/4) [4/(L - I)] - 
( I /  L ) / [  1 - ( I /  L)], for 1 << I << L. A more careful asymptotic analysis shows that Bs( I) 
contains additional terms, namely, 

( l a )  
constant + $ [ I +  In( 1 + 1/4)] Bs( I )  = B’(0) + ( 

1 +$[(L- I )  +In( 1 +$( L - I))] 

l < < I < L  ( l b )  

where d, = 2 and Bs(0) is a constant. Thus, for I << L, B’( I) 
Using the definition of d ;  

B’(0) and Ms( I) 5 IB’(0). 

Ms( I) - IdS’,  (2) 
we find d ;  = 1 for d = 6. The 1 = L limit of (1 a )  is B ( L )  - L, which is the result that 
was obtained in earlier studies (Havlin and Nossal 1984). 

Note that although our derivation showed only that Bs( I) - [( I / L ) / (  1 - ( I/L))Im, 
where a = 1 ,  the exponent in ( 1  b )  has been written as d,  - 1. Thus we implicitly assume 
that ( 1 )  is valid for percolation clusters in all d. The data shown in figures 2 and 3, 
for d = 2, seem to support this inference. When we subtract a value BS(0)  = constant = 
1.44 from the data for L = 400, and plot log[Bs( I)  - Bs(0 ) ]  as a function of log[( I /  L)/( 1 - 
(I/  L))] as shown in figure 4, we find a = 0.67 f 0.03, which is in close agreement with 
the value of the intrinsic dimension d, = 1.64 which was found earlier (Havlin and 
Nossal 1984, Pike and Stanley 1981, Alexandrowicz 1980). 

The fact that the data shown in figures 2-4 can be represented by setting B‘(0) = 
constant (cf ( 1 ) )  shows that, for d =2 ,  

Ms( I )  - I d ? ,  d i =  1; L+w.  (3) 
This expression is in accordance with the theoretical results for d = 6. Since fractal 
exponents, usually do not decrease as d increases, we thus argue that ds=  1 for all 

i / / L )  / i l - l i L 1  

Figure 4. B s ( I ) - B ’ ( 0 ) ,  where B’(0) = 1.44 is the average value for the first ten integer 
values of I, Plotted on logarithmic coordinates against ( I /  L)/[ 1 - ( I /  L)] for the L = 400 
data shown in figure 2. The slope of the line is d ;  - 1 = 0.67 (see (1)). 
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1 < d 6 6. (The case d = 1 is trivial.) The interpretation of this result is that the skeletons 
of infinite percolation clusters essentially are chemically linear systems (Havlin et a1 
1984~).  That is, over the range 1<0.9L (i.e., except for values of 1 close to L, where 
a great deal of branching is evident), only a finite number of paths of minimum length 
connect any aribtrary point in a cluster with an arbitrary chemical shell surrounding 
that point. Thus, studies of the skeletons may suggest quantitative measures for the 
qualitative concept of finite ramification. It should be noted that the elastic backbone 
which has been studied by Hermann et a1 (1984) is the backbone of the skeleton 
defined in the present work. 

The radius of gyration of the 2d skeletons also was calculated numerically as a 
function of 1, i.e., 

We found that the value of the exponent is vs = 0.87 f 0.02, which is the same as the 
percolation result (Havlin and Nossal 1984), and we thus deduce 

The results of (4) and ( 5 )  are interesting because, since ds= 1, it follows that 
d;= ;-I 

as is the case for linear chains. 
In conclusion, we assert that the intrinsic dimension of the skeletons of percolation 

clusters is universal for all d, namely, d; = 1. This may substantiate the qualitative 
arguments that percolation clusters at criticality are finitely ramified. It is reasonable 
to assume that lattice animals also have the property ds = 1 since they can be generated 
from percolation clusters when p < p c  (Djordjevic et a1 1984). Note, too, that for the 
case of the d-dimensional Sierpinski gasket it can be easily shown that B’(1) = 
constant = d for I < OSL, i.e., again, d3 = 1. We presently are studying systems for 
which d;> 1, and results will be presented elsewhere (Havlin et a1 1984b). 
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